Operation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm

Authors

  • Nateghi, Alireza Faculty of Electrical and Computer Engineering, Shahid Sattari University of Aeronautical Engineering
  • Zare, Hassan Department of Electrical Engineering, Technical and vocational University (TVU)
Abstract:

: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented to minimize total operational costs by learning the optimal strategy for operation scheduling of MG systems. This model-free algorithm deploys an actor-critic architecture which can not only model the continuous state and action spaces properly but also overcome the curse of dimensionality. In order to evaluate the efficiency of the proposed algorithm, the results were compared with the analytical method and a Q-based learning algorithm which demonstrates the capability of the DDPG method from the aspects of convergence, running time, and total costs.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

DeepCAS: A Deep Reinforcement Learning Algorithm for Control-Aware Scheduling

We consider networked control systems consisting of multiple independent closed-loop control subsystems, operating over a shared communication network. Such systems are ubiquitous in cyber-physical systems, Internet of Things, and large-scale industrial systems. In many large-scale settings, the size of the communication network is smaller than the size of the system. In consequence, scheduling...

full text

Flow-shop Scheduling Based on Reinforcement Learning Algorithm

In the paper a machine learning based method will be proposed to give a quasioptimal solution to the m-machine flow-shop scheduling problem. Namely, given a set of parts to be processed and a set of machines to carry out the process and the sequence of machines is fixed, each part should have the same technological path on all machines; the order of jobs can be arbitrary. The goal is to find ap...

full text

A Scheduling Reinforcement Learning Algorithm

This paper presents a scheduling reinforcement learning algorithm designed for the execution of complex tasks. The algorithm presented here addresses the highlevel learning task of scheduling a single transfer agent (a robot arm) through a set of sub-tasks in a sequence that will achieve optimal task execution times. In lieu of fixed interprocess job transfers, the robot allows the flexibility ...

full text

Vision-based Deep Reinforcement Learning

Recently, Google Deepmind showcased how Deep learning can be used in conjunction with existing Reinforcement Learning (RL) techniques to play Atari games[11], beat a world-class player [14] in the game of Go and solve complicated riddles [3]. Deep learning has been shown to be successful in extracting useful, nonlinear features from high-dimensional media such as images, text, video and audio [...

full text

Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)

In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...

full text

Web pages ranking algorithm based on reinforcement learning and user feedback

The main challenge of a search engine is ranking web documents to provide the best response to a user`s query. Despite the huge number of the extracted results for user`s query, only a small number of the first results are examined by users; therefore, the insertion of the related results in the first ranks is of great importance. In this paper, a ranking algorithm based on the reinforcement le...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 12  issue 2

pages  2- 11

publication date 2022-08

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023